Imagen: Vestman / Flickr

¿Alguna vez te has preguntado cómo hace la transmisión automática para cambiar de marchas? ¿Por qué cuando detienes el coche no se cala el motor? Así es como funciona.

Advertisement

La transmisión automática es básicamente magia negra. El gran número de piezas móviles hace que sea muy difícil de comprender. Vamos a simplificar un poco los conceptos para obtener una comprensión básica de cómo funciona un sistema tradicional basado en un convertidor de par.

Tu motor se conecta a tu transmisión en un lugar llamado cárter o caja del convertidor. En los vehículos equipados con transmisión automática, esta caja contiene un convertidor de par en lugar del embrague de los vehículos manuales. El convertidor de par es un acoplador hidráulico cuyo trabajo es conectar tu motor a tu transmisión, y de este modo impulsar tus ruedas. La transmisión contiene los engranajes planetarios que se encargan de proporcionar diferentes relaciones de cambio. Para tener una mejor idea de cómo funciona todo el sistema de transmisión automática, echemos un vistazo al convertidor de par y a los engranajes planetarios.

Convertidor de par

En primer lugar, la placa flexible de tu motor (básicamente un volante motor para coches automáticos) se conecta directamente al convertidor de par. Por lo tanto, cuando el cigüeñal gira también lo hace la caja del convertidor de par. El objetivo del convertidor de par es proporcionar un medio para conectar y desconectar la potencia del motor a la carga accionada. El convertidor de par sustituye al embrague de una transmisión manual convencional. ¿Y cómo funciona el convertidor de par? Bueno, echa un vistazo al video de arriba. Explica los principios básicos detrás de un acoplador hidráulico. Cuando lo hayas visto, sigue leyendo para ver en qué se diferencia un convertidor de par de un acoplador hidráulico estándar.

Los componentes principales de un convertidor de par son: el impulsor, la turbina, el estátor y el embrague de anulación. El impulsor forma parte de la caja del convertidor de par, que está conectada al motor. Impulsa la turbina mediante fuerzas viscosas. La turbina está conectada al eje de entrada de la transmisión. En esencia, el motor gira el impulsor, que comunica las fuerzas a un fluido, que entonces gira la turbina, enviando un par de fuerzas a la transmisión.

Advertisement

El fluido de transmisión fluye en un bucle entre el impulsor y la turbina. El acoplador hidráulico del video de arriba sufre severas pérdidas de energía por agitación (y una consecuente acumulación de calor) cuando el fluido que regresa de la turbina tiene una componente de velocidad que se opone a la rotación del impulsor. Es decir, cuando el fluido que regresa de la turbina trabaja contra la rotación del impulsor y, por lo tanto, contra el motor.

El estátor se encuentra entre el impulsor y la turbina. Su objetivo es minimizar las pérdidas por agitación y aumentar la producción del par de fuerzas, reorientando el fluido a medida que regresa de la turbina al impulsor. El estátor dirige el fluido de manera que la mayor parte de su velocidad coincide con la dirección del impulsor, lo que ayuda al impulsor a moverse y, en consecuencia, aumenta el par de fuerzas producido por el motor. Esta capacidad de multiplicar el par es el motivo por el que se llaman convertidores de par y no acopladores hidráulicos.

Advertisement

Sponsored

El estátor está acoplado con un embrague unidireccional. Solo puede girar en una dirección cuando la turbina y el impulsor se mueven aproximadamente a la misma velocidad (como cuando conduces por carretera). El estátor gira con el impulsor o no lo hace. Sin embargo, los estátores no siempre multiplican el par. Te proporcionan más par cuando paras (frenas en un semáforo, por ejemplo) o cuando aceleras, pero no cuando conduces a velocidad constante.

Además del embrague unidireccional en el estátor, algunos convertidores de par contienen un embrague de anulación cuyo trabajo es bloquear la turbina con la caja del convertidor de par de manera que la turbina y el impulsor estén conectados mecánicamente. Eliminar el acoplamiento de fluido y sustituirlo por una conexión mecánica asegura que toda la fuerza del motor se transmita al eje de entrada de la transmisión.

Engranajes planetarios

Imagen: Wikipedia

Ahora que hemos averiguado cómo se envía la energía del motor a la transmisión, es hora de averiguar cómo demonios cambia de marchas. En una transmisión convencional, cambiar de marchas es la tarea de los engranajes planetarios. Entender cómo funcionan los engranajes planetarios es un poco complicado, así que echaremos un vistazo a un conjunto básico.

Advertisement

Un engranaje planetario (también conocido como engranaje epicicloidal) consiste en un engranaje “sol” en el centro, los engranajes “planeta” que giran alrededor del engranaje sol, un “portaplanetas” que conecta los engranajes planeta, y un engranaje “anillo” en el exterior, que encaja con los engranajes planeta. La idea básica detrás de un conjunto de engranajes planetarios es la siguiente: usando embragues y frenos, puedes evitar que ciertos componentes se muevan. Al hacerlo, puedes modificar la entrada y la salida del sistema, y así cambiar la relación de transmisión global. Piensa en ello de esta manera: un conjunto de engranajes planetarios te permite cambiar las relaciones de cambio sin tener que acoplar engranajes diferentes. Ya están todos acoplados. Todo lo que tienes que hacer es utilizar embragues y frenos para cambiar qué componentes giran y cuáles permanecen inmóviles.

La relación de transmisión final depende del componente que se fija. Por ejemplo, si el anillo está fijado, la relación de transmisión será mucho más corta que si el engranaje sol está fijado. Conociendo perfectamente los riesgos que conlleva poner aquí una ecuación, voy a poner una de todos modos. La siguiente ecuación te dirá las relaciones de cambio dependiendo de qué componente está fijo y cuáles están en movimiento. R, C y S representan respectivamente el engranaje anillo, el engranaje portaplanetas y el engranaje sol. Omega simplemente representa la velocidad angular de los engranajes, y N es el recuento de dientes.

Así es como funciona: supongamos que decidimos mantener fijo el portaplanetas y hacemos que el engranaje sol sea nuestra entrada (de modo que el anillo sea nuestra salida). Los planetas serán capaces de rotar, pero no podrán moverse, ya que el portaplanetas no puede moverse. Omega_c es cero, por lo que el lado izquierdo de la ecuación anterior se habrá ido. Eso significa que, cuando giremos el engranaje sol, este enviará el par de fuerzas a través de los engranajes planetarios hasta el engranaje anillo. Para calcular cuál es la relación de cambio, simplemente resolvemos la ecuación anterior para Omega_r / Omega_s. Terminamos con N_s / N_R: es decir, la relación de cambio cuando fijamos el portaplanetas y hacemos que el anillo sea nuestra salida y el engranaje sol nuestra entrada es sencillamente la relación del número de dientes entre el engranaje sol y el anillo. El resultado es negativo, ya que el anillo gira en dirección opuesta al sol.

Advertisement

Advertisement

También puedes bloquear el engranaje anillo y hacer que el engranaje sol sea tu entrada, y puedes bloquear el engranaje sol y hacer que el portaplanetas sea tu entrada. Dependiendo de lo que bloquees, obtendrás diferentes relaciones de transmisión, es decir, obtendrá diferentes “marchas”. Para obtener una relación de cambio de 1:1, simplemente bloquea los componentes (solo tienes que bloquear dos para hacerlo) de manera que el cigüeñal gire a la misma velocidad que el eje de salida de la transmisión.

Entonces, ¿cómo se mueven los frenos y embragues para cambiar los engranajes? Bueno, el convertidor de par también se encarga de impulsar la bomba de fluido de la transmisión. La presión del fluido es lo que activa los embragues y los frenos en el engranaje planetario. La bomba es a menudo de tipo gerotor (una bomba de engranajes), lo que significa que un rotor gira en una caja y cuando gira “engrana” con la caja. Este engranaje crea cámaras que cambian de volumen. Cuando el volumen aumenta, se crea un vací, que es la entrada de la bomba. Cuando el volumen disminuye, el fluido es comprimido o bombeado por el engranaje, que es la salida de la bomba. Una unidad de control hidráulica envía señales hidráulicas para cambiar los engranajes (a través de los frenos de banda y los embragues), así como para bloquear el convertidor de par.

La mayoría de las transmisiones automáticas modernas utilizan un engranaje planetario de Ravigneaux. Tienes dos engranajes sol (uno pequeño y uno grande), dos sistemas de planetas (internos y externos) y un portaplanetas. Son esencialmente dos engranajes planetarios simples en uno.

Advertisement

Ahora que entendemos los convertidores de par y los engranajes planetarios, echemos un vistazo al video de abajo para ver cómo funciona todo:

Síguenos también en Twitter, Facebook y Flipboard.